Exercise 8

Strontium-90 has a half-life of 28 days.
(a) A sample has a mass of 50 mg initially. Find a formula for the mass remaining after t days.
(b) Find the mass remaining after 40 days.
(c) How long does it take the sample to decay to a mass of 2 mg ?
(d) Sketch the graph of the mass function.

Solution

Part (a)

Assume that the rate of mass decay is proportional to the amount of mass remaining at any given time.

$$
\frac{d m}{d t} \propto-m
$$

There's a minus sign here because mass is being lost as time increases. Change the proportionality to an equation by introducing a (positive) constant k.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you have to differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
\begin{equation*}
m(t)=m_{0} e^{-k t} \tag{1}
\end{equation*}
$$

Use the fact that strontium- 90 has a half-life of 28 days to get k.

$$
\begin{gathered}
\frac{m_{0}}{2}=m_{0} e^{-k(28)} \\
\frac{1}{2}=e^{-28 k} \\
\ln \frac{1}{2}=\ln e^{-28 k} \\
-\ln 2=-28 k \ln e \\
k=\frac{\ln 2}{28} \approx 0.0247553 \text { day }^{-1}
\end{gathered}
$$

Equation (1) then becomes

$$
\begin{aligned}
m(t) & =m_{0} e^{-\left(\frac{\ln 2}{28}\right) t} \\
& =m_{0} e^{\ln 2^{-t / 28}} \\
& =m_{0}(2)^{-t / 28}
\end{aligned}
$$

Use the fact that the mass is 50 milligrams initially to determine m_{0}.

$$
m(0)=m_{0}(2)^{-(0) / 28}=50 \quad \rightarrow \quad m_{0}=50
$$

Therefore, the mass in milligrams after t days have passed is

$$
m(t)=50(2)^{-t / 28} .
$$

Part (b)

The mass remaining after 40 days is

$$
m(40)=50(2)^{-40 / 28} \approx 18.5749 \mathrm{mg} .
$$

Part (c)

To find how long it takes the sample to decay to 2 mg , set $m(t)=2$ and solve the equation for t.

$$
\begin{gathered}
m(t)=2 \\
50(2)^{-t / 28}=2 \\
2^{-t / 28}=\frac{1}{25} \\
\ln 2^{-t / 28}=\ln \frac{1}{25} \\
\left(-\frac{t}{28}\right) \ln 2=-\ln 25 \\
t=\frac{28 \ln 25}{\ln 2} \approx 130.028 \text { days }
\end{gathered}
$$

Part (d)
Below is a graph of the mass versus time.

